7.—Principal	Heights in	each Province and	i Territor	y—concluded
--------------	------------	-------------------	------------	-------------

Territory and Height	Elevation Territory and Height		Elevation
	ft.		ft.
Yukon Territory—concluded	ĺ	Northwest Territories—concluded	
St. Elias Mountains—concluded		Arctic Islands—concluded	
McArthur Peak	14.253	Elleamere—concluded	
Mount Augusta	14,100	Mount Townsend	7,200
Mount Kennedy	13,905	Mount Jeffers	6,500
Mount Strickland	13,818	Mount Wood	5,900
Mount Newton	13,811	Mount Cheops	5.200
Mount Cook		Devon—	-•
Mount Craig	13,250	Ice Cap	6,190
Badham Mountain		Mackenzie King-	-•
Mount Malaspina	12,150	Leffingwell Crage	1,500
Mount Seattle	10,082	Banks—	-,
i		Durham Heights	2.213
Northwest Territories		Victoria—	-,
14444111134 11111411113		Shaler Mountains	2,000
rctic Islands		Mount Bumpus	1,700
Baffin—		Mainland—	-,
Penny Highland (Ice Cap)	8,200-8,500	Mount Sir James MacBrien	9.062
Mount Taule	5,800 4	Franklin Mountains-	-,
Cockscomb Mountain			5,178
Barnes Ice Cap	3,700 4	Mount Clark	4.70R
Knife Edge Mountain	2,493		4.610
Ellesmere—	-,	Nahanni Butte	4,579
United States Range	9,6004	Richardson Mountains-	-,*.*
Commonwealth Mountain	7,500 4		3,219

¹ The summit of the Cypress Hills, with an elevation of 4,810 feet, is in Alberta. British Columbia boundary.

³ Part of the British Columbia-Alaska boundary.

⁴ Approximate.

Section 2.—Geology and Economic Minerals of Canada*

The bedrock foundation of Canada and its adjacent continental shelves seem rigid and unchanging to human eyes, yet, in terms of geological time, these rocks and their contained mineral wealth represent only a momentary stage in the evolution of the Continent, an evolution which began more than 4,000,000,000 years ago. Geological study of most of the present land surface of Canada has shown that at various periods and in various regions dark molten rocks rose from great depths, volcanoes erupted on the ancient land and sea floors, thick sequences of sediments accumulated, granites were either intruded as molten magma or derived from earlier rocks during intense folding and mountain building, erosion wore down or subdued the older mountain chains, shallow seas repeatedly encroached on and receded from the Continent of today, continental glaciers covered most of Canada and, as part of these geological processes, valuable minerals and fossil fuels became concentrated under exceptionally favourable conditions. These interrelated geological processes have produced the buried crust and the present face of Canada. They control the distribution of its economic mineral deposits, its physiography and, in large part, its present and potential land use.

To introduce some relatively simple concepts, let us go back in geological time and select a few examples in which erosion of land, deposition of the resulting detritus, and a series of favourable circumstances have concentrated valuable minerals for man's use. Geological processes are best understood when they can be observed in action at the earth's surface or in relatively shallow lakes or oceans. Modern Atlantic waves, pounding on exposed cliffs of the Maritime Provinces, greatly accelerate the rate of erosion. Fallen blocks are rounded and abraded on the cobble beaches, while waves and currents sweep the sand and rock flour along the coast to sandy beaches or spits, or carry them seaward to add to the slowly growing sedimentary beds of the continental shelf. This natural erosion and

² Part of the Alberta-4 Part of the Yukon-

^{*}Prepared by W. D. McCartney with Grenville and Interior Plains sections from an earlier report by A. H. Lang and revision of Cordilleran section by D. J. T. Carson, Geological Survey of Canada.