7.-Princlpal Heights in each Province and Territory-concluded

Territory and Height	Elevation	Territory and Height	Elovation
Yukon Territory-concluded	ft.	Northwest Terrttories-concluded	ft.
St. Elias Mountains-concluded		Arctio Islands-concluded	
MeArthur Pesk.	14.253	Ellesmere-conctuded	
Mount Augusta.	14, 100	Mount Townend....	7, 2006
Mount Kenjedy	13,905 13,818	Mount Jeffers.....	6,5006
Mount Newton.	13,811	Mount Cheops	5,200 ${ }^{\text {c }}$
Mount Cook.	13.780	Devon-	
Mount Craig...	13,250	Ice Cap.	0,190
Badbsm Mountai	12,625 12,150	Mackenzie King- Leffingwell Craga.	
Mount Seattle. .	10,082	Banke- Durham Heights. .	2,218
Northwest Territorles		Victoria- Shaler Mountains.	
Arctic Ialands-		Mount Bumpus.	1,700
Bagfin-		Mainland-	
Penny Fighland (Ice Cap) Mount Thule.............	8,200-8,500 ${ }_{5}^{5,800}$	Mount Sir Jamea MacBrion.	9,062
Cockscomb Mountain	5.3005	Cap Mountain......	3,175
Barnea Ice Cap.......	3,700	Mount Clark.,.	4.708
Knife Edge Mountain.	2,493 5	Pointed Mountsin.....	4.610
Ellesmere- United States Range		Nahanni Butte...........	4,579
Commonwealth Mountain..	$7,5008$	Mount Goodenough...	8,219

[^0]
Section 2.-Geology and Economic Minerals of Canada*

The bedrock foundation of Canada and its adjacent continental ehelves seem rigid and unchanging to human eyes, yet, in terms of geological time, these rocks and their contained mineral wealth represent only a momentary stage in the evolution of the Continent, an evolution which began more than $4,000,000,000$ years ago. Geological study of most of the present land surface of Canada has shown that at various periods and in various regions dark molten rocks rose from great depths, volcanoes erupted on the ancient land and sea floors, thick sequences of sediments accumulated, granites were either intruded as molten magma or derived from earlier rocks during intense folding and mountain building, erosion wore down or subdued the older mountain chains, shallow seas repeatedly encroached on and receded from the Continent of today, continental glaciers covered most of Canada and, as part of these geological processes, valuable minerals and fossil fuels became concentrated under exceptionally favourable conditions. These interrelated geological processes have produced the buried crust and the present face of Canada. They control the distribution of its economic mineral deposits, its physiography and, in large part, its present and potential land use.

To introduce some relatively simple concepts, let us go back in geological time and select a few examples in which erosion of land, deposition of the resulting detritue, and a series of favourable circumstances have concentrated valuable minerals for man's use. Geological processes are best understood when they can be observed in action at the earth's surface or in relatively shallow lakes or oceans. Modern Atlantic waves, pounding on exposed cliffs of the Maritime Provinces, greatly accelerate the rate of erosion. Fallen blocks are rounded and abraded on the cobble beaches, while waves and currents sweep the sand and rock flour along the coast to sandy beaches or spits, or carry them seaward to add to the slowly growing sedimentary beds of the continental shelf. This natural erosion and

[^1]
[^0]: 1 The eammit of the Cypress Hills, with an elevation of 4,810 feet, is in Alberta. British Columbia boundary, ${ }^{3}$ Psrt of the British Columbia-Alasks boundary.

[^1]: - Prepared by W. D. MeCartney with Grenville and Interior Plains sections from an earlier report by A. H. Lang and revieion of Cordilleran section by D. J. T. Caraon, Geological Survey of Canada.

